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Abstract. We outline computational techniques for predicting perceptions of risk. Our
approach uses the structure of word distribution in natural language data to uncover rich
representations for a very large set of naturalistic risk sources. With the application of
standardmachine learning techniques, we are able to accurately map these representations
onto participant risk ratings. Unlike existing methods in risk perception research, our
approach does not require any specialized participant data and is capable of generalizing
its learned mappings to make quantitative predictions for novel (out-of-sample) risks. Our
approach is also able to quantify the strength of association between risk sources and a very
large set of words and concepts and, thus, can be used to identify the cognitive and af-
fective factors with the strongest relationship with risk perception and behavior.
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Introduction
The perception of risk is influenced by a number of core
psychological variables, and much of the research on
risk perception over the past four decades has been
dedicated to better understanding the nature of this re-
lationship, and its implications for human behavior and
public policy (Fischhoff et al. 1978; Johnson and Tversky
1983, 1984; Slovic et al. 1984; Slovic 1987; Fischhoff 1995;
Loewenstein et al. 2001; Slovic and Weber 2002; Slovic
et al. 2005; Slovic and Peters 2006; McDowell et al. 2016).
Despite these important advances, one challenge re-
mains. Risk perception judgments nearly always involve
a naturalistic risk source, for which people have rich and
complex knowledge representations. These representa-
tions guide both emotional and cognitive assessments
of the risk source, and subsequently determine the extent
to which the risk source is considered hazardous. Al-
though risk perception research has shed light on how
core psychological processes involving emotion and
cognition interact with risk perception, it is not cur-
rently able to specify exactly what people know about
different risk sources, and how this knowledge can be
used to study their perceptions of risk.

Consider, for example, the risk of terrorism. Most
people know what terrorism is and have strong asso-
ciations between terrorism and various objects, in-
dividuals, and events. This knowledge is a key
determinant of how individuals perceive the risks as-
sociated with terrorism and how societies respond
to these risks. Current approaches to studying risk
perception use various psychometric instruments to

uncover people’s associations and risk perceptions for
risk sources like terrorism (see, e.g., Slovic andWeber,
2002, Jenkin 2006, Sanquist et al. 2008). However, the
type of data uncovered through these instruments is
fairly limited. For example, a typical survey may
require participants to evaluate a risk source like
terrorism on various dimensions of interest, such as
how much dread it elicits, its catastrophic potential,
and its ability to be known and controlled. Although
these evaluations would shed light on key aspects
of how people think and feel about terrorism, the
representations obtained from such methods would
still be much sparser than those actually possessed by
individuals.
A related limitation involves generalization: Existing

techniques need to directly survey people in order to
uncover relevant risk representations and associations.
Thus they cannot be used to make predictions about
novel, out-of-sample, sources of risk, for which survey
data does not exist. For example, what we know about
risk perceptions for terrorism cannot, by itself, be used
to predict the perceived riskiness of a related risk
source like cyberespionage (without first querying
participants for ratings of cyberespionage on various
dimensions of interest). As the list of risk sources is
endless, with multiple new risks coming to prominence
every year, this greatly restricts the descriptive scope of
risk perception research.
One implication of this lack of generalizability is that

it is difficult to predict both retrospective and real-time
perceptions of risk. People’s representations of the
world around them are continuously evolving. Existing

1

http://pubsonline.informs.org/journal/mnsc/
mailto:bhatiasu@sas.upenn.edu
http://orcid.org/0000-0001-6068-684X
http://orcid.org/0000-0001-6068-684X
https://doi.org/10.1287/mnsc.2018.3121


survey-based techniques, which require extensive par-
ticipant data, are ill suited to tracking these evolving
representations, and thus cannot be used to make im-
mediate assessments of changes to perceived risk in
response to notable events (e.g., new types of terrorist
attacks). Of course, researchers cannot go back in time
to administer surveys, implying that the retrospective
study of risk perception is nearly impossible. Thus, for
example, we cannot track representations and risk per-
ceptions of terrorism before and after the September 11
World Trade Center bombings, with current techniques.

Fortunately, recent developments in data science
have made it possible to uncover high quality knowl-
edge representations for a very large set of real world
objects and events without the need for participant
survey data. The critical idea underlying this ap-
proach is that knowledge—what people know about
and associate with different objects and concepts—is
reflected in the distribution of words in language. This
insight has a long history in psychology and linguistics
(Harris 1954, Firth 1957). However, it is only recently
that large natural language data sets and the corre-
sponding computational resources for analyzing these
data sets have beenmade available to researchers. With
these advancements it is now possible to measure word
distributions on a very large scale, and subsequently
quantify how people think and feel about hundreds of
thousands everyday objects and concepts (Landauer
and Dumais 1997, Griffiths et al. 2007, Jones and
Mewhort 2007, Dhillon et al. 2011, Mikolov et al.
2013, Pennington et al. 2014).

In this paper, we utilize a popular subclass of word
distribution-based knowledge representation tech-
niques, commonly referred to vector space semantic
models (also known as word embedding models). As
suggested by their name, such models specify knowl-
edge representations for objects and concepts using
vectors in a high-dimensional semantic space. These
vectors are typically obtained by performing a form of
dimensionality reduction on word co-occurrence data.
The use of word co-occurrence to obtain representations
implies that similar concepts, which are often talked
about in language in a similar manner, have similar
vector representations and are closer to each other in the
semantic space.

Vector space semantic models have been shown to
predict a wide range of low-level behavioral phe-
nomena involving similarity judgment, categorization,
free association, text comprehension, and semantic
priming (see Bullinaria and Levy 2007 or Jones et al.
2015 for a review). Most recently, such representations
also have been found to capture high-level associative
judgment, including factual judgment, probability
judgment, forecasting, social judgment, political
judgment, and moral judgment for a variety of real-
world objects and events (Holtzman et al. 2011;

Dehghani et al. 2014; Bhatia 2017a, 2017b; Caliskan
et al. 2017; Garten et al. 2017; Bhatia 2018; Bhatia et al.
2018). These successes suggest that the semantic vector
approach also can be applied to risk perception re-
search. This would involve using word co-occurrence
data to derive high-dimensional vector representa-
tions for risk sources, such as terrorism, as well as for
other objects and concepts related to risk perception.
These representations could be used to predict risk
ratings, as well as to better understand features of the
vector representations that most strongly map onto
high ratings of riskiness.
To test this idea, we obtained participant ratings for

a large number of risk sources of varying risk levels,
including technologies, activities and occupations, and
geopolitical forces. We then used a well-known set of
semantic vectors (Mikolov et al. 2013), that have, in prior
work, been shown to accurately describe knowledge
in associative judgment and consumer decision-making
(Bhatia 2017a, 2018), to specify high-dimensional vector
representations for each of the risk sources. Six different
techniques from machine learning were then applied
to map these high-dimensional representations to the
risk perceptions of participants, and to examine the
out-of-sample predictive power of the semantic vector
approach. We also considered how high-dimensional
vector representations could be used to uncover the
conceptual associates of risk, and how these associates
could be analyzed in terms of psychological charac-
teristics such as emotion and concreteness. Finally, we
used our vector representations to predict participant
ratings of the risk sources on commonly studied risk
dimensions (Fischhoff et al. 1978), thereby testingwhether
our vector representations can accurately characterize
the key properties that people associate with real-world
sources of risk.

Representation and Perception of Risk
The analysis of risk encompasses many techniques,
domains, and academic disciplines (see Fischhoff and
Kadvany 2011 for a short introduction). One of themost
relevant areas of risk analysis involves risk perception.
Risk, at its core, is a subjective construct (Krimsky and
Golding 1992, Pidgeon et al. 1992, Slovic 1992), and
understanding how people perceive risk is necessary in
order to understand how risk interacts with the de-
cisionsmade by individuals, groups, and organizations
(Fischhoff et al. 1978, Slovic 1987, Fischhoff 1995, Slovic
and Weber 2002). Although there are a number of
different ways to study risk perception, in this paper
we present techniques for understanding risk per-
ception that most closely complement the psycho-
metric paradigm (Fischhoff et al. 1978, Slovic et al. 1984,
Slovic 1987). In the discussion section we outline
techniques for extending our approach to analyze so-
ciocultural determinants of risk perception.

Bhatia: Predicting Risk Perception
2 Management Science, Articles in Advance, pp. 1–24, © 2018 INFORMS



In the psychometric paradigm for studying risk
perception, individuals are asked to evaluate the
riskiness of various risk sources and are also asked to
make judgments about other properties of the risk
sources. Commonly studied properties include the
outcomes (such as deaths) generated by the risk source,
and the probabilities corresponding to these outcomes.
However, outcomes and probabilities are typically
better predictors of expert risk judgment than lay risk
judgment (see, e.g., Slovic and Weber 2002). In this
paper, our primary emphasis is on the study of lay
judgment. This type of judgment has been shown to
depend on other, psychologically richer properties,
such as the voluntariness, immediacy, knowledge and
certainty, controllability, and novelty, of the risk
source, the potential for fatal consequences of the risk
source, and the dread elicited by the risk source. Dif-
ferent risk sources are associated with different com-
binations of these properties, and differences in risk
judgment across different risk sources can be attributed
to differences in the properties associated with the risk
sources. Indeed, these properties are also associated
with each other in a structured manner, and factor
analysis has shown that these determinants of risk
perception can be further condensed into a smaller set
of higher-order dimensions (such as “dread risk,”
which characterizes catastrophic, uncontrollable, fatal,
and dread-eliciting risks, and “unknown risk,” which
characterizes unobservable, new, unknown, and
delayed risks) (Fischhoff et al. 1978, Slovic et al. 1984,
Slovic 1987; see Slovic and Weber 2002 for a review).

The finding that dread is a core dimension of risk
perception illustrates the importance of emotional in-
fluences in evaluations of riskiness. Prior work has
found that allowing for the effects of emotion on risk
perception greatly improves the prediction of risk
judgments (compared with using outcomes and
probabilities alone) (Holtgrave and Weber 1993).
Emotion does have a somewhat complex influence on
risk perception, in that feelings of risk both influence
and are influenced by nonemotional factors (Johnson
and Tversky 1983, Loewenstein et al. 2001). Of course
emotions interact with each other as well, so that there
is a negative relationship between perceived risk and
perceived benefit (Slovic et al. 2002, 2005; Slovic and
Peters 2006). Although such relationships are occa-
sionally considered to be harmful or irrational, there
are many positive aspects of emotional, and, more
generally, association-based processing, in the context
of risk (see Slovic et al. 2002 for a discussion).

The role of association in risk perception makes it
necessary to understand exactly what people associate
with different risk sources. This is a special case of
a more general question: what do people know about
different risk sources, and how can this knowledge
be uncovered formally studied? Such questions are

intimately related to the study of semantic repre-
sentation in cognitive psychology, and prior work has
already applied insights from cognitive psychology
to understand the representation of risk sources. One
such application involves multidimensional scaling
(Kruskal 1964, Borg et al. 2012), which uses similarity
ratings across pairs of risk sources to recover the
latent dimensions involved in representing the risk
sources. Thus, for example, in addition to asking
individuals to evaluate the riskiness of a risk source,
this technique also asks them to rate the similarity
between different pairs of risk sources. Latent di-
mensions that best capture the structure of variability
across similarity ratings are then used to predict
risk evaluations and interpret the psychological un-
derpinnings of risk perception (see Johnson and Tversky
1984 for an early application of this method).
Although multidimensional scaling presents a useful

technique for uncovering risk representations, it also
involves a number of limitations. Most notably, mul-
tidimensional scaling requires explicit participant
judgments of similarity. This requirement makes
generalizing insights recovered through this technique
to new risk sources (for which similarity ratings are
unavailable) difficult. Relatedly, such representations
cannot be used to specify associations between the risk
sources and other objects, concepts, and events not
typically considered to be sources of risk (for which
similarity ratings may not make sense). Finally, the
types of representations uncovered through tasks that
require explicit participant ratings are much sparser
than the representations actually possessed by in-
dividuals. All of these issues also limit the applicability
of other psychometric techniques, which use ratings on
dimensions like voluntariness or dread, rather than
similarity ratings between different sources of risk, to
specify risk representations and predict risk perception.

Vector Space Semantic Models
What is necessary then is a way of quantifying rep-
resentations for risk sources that reflects the richness of
human representations of risk, and that can sub-
sequently be used to uncover the associations between
different sources of risk and the wide range of objects,
concepts and events that play a role in the mental lives
of individuals. Ideally, such an approach would not
rely on explicit participant ratings of similarity or
ratings on various risk-related dimensions, and thus
could be applied in an a priori manner to predict out-of-
sample risk assessments for a large and diverse range
of risk sources.
Fortunately, there have been theoretical and tech-

nical advances in data science that have made it pos-
sible to do this. These advances rely on large-scale
natural language data that has recently become available
with the growth of the Internet. By examining the
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structure ofword distribution in this data, it is possible to
uncover high-dimensional vector representations for
words and phrases, and subsequently specify the asso-
ciation between any two words using the distance
between their corresponding vectors (Landauer and
Dumais 1997, Griffiths et al. 2007, Jones and Mewhort
2007, Dhillon et al. 2011, Mikolov et al. 2013, Pennington
et al. 2014). For example, such an approach may use the
structure of word distribution in a large natural
language data set to represent a concept like cat as
a high-dimensional vector c. It would also represent
thousands of other concepts as vectors in the same
semantic space, and using the distance between c and
these other vectors, this approach would be able to
infer the relatedness or association between cats and
various objects, events, people, places, and things.

Representations derived using the above semantic
vector methods have been shown to successfully pre-
dict behavior in tasks involving similarity judgment,
categorization, cued recall, and free association (see
Bullinaria and Levy 2007, Jones et al. 2015 for a review).
Of course, these representations are also desirable for
modelling language use in humans, and, in turn, for
facilitating natural language processing in machines
(Turney and Pantel 2010). Although a lot of the existing
work applying these techniques involves core topics in
the study of language, memory, and cognition, recently
Bhatia (2017a) has extended this approach to study
high-level judgment involving real-world object and
events, including probability judgment and fore-
casting. High-level judgment is often associative and
vector space models can be used to formalize the as-
sociations at play in this domain. Bhatia (2017a) finds
that the associations uncovered through vector space
semantic models predict participant response proba-
bilities and probability assignments on a variety of
existing and novel judgment tasks. These include tasks
inwhich associative judgment leads to errors, as well as
tasks in which associative judgment generates correct
responses. Bhatia (2017b) and Caliskan et al. (2017)
apply a variant of this technique to study the preju-
diced and stereotyped associations at play in social
judgment, and Bhatia (2018) uses this technique to
study how associations influence the objects that come
to mind in memory-based decisions. Holtzman et al.
(2011), Dehghani et al. (2014), and Bhatia et al. (2018)
have also applied distributional models to study po-
litical bias, and Garten et al. (2017) recently have used
this approach to study morality-based representations
in social networks.

The success of the above work suggests that vector
space semantic models can be extended to describe
knowledge representations for real-world risk sources.
In this paperwe attempt to do thiswith semantic vectors
obtained using the continuous bag-of-words (CBOW)
and skip-gram techniques of Mikolov et al. (2013). This

approach relies on a recurrent neural network that, for
the CBOW technique, attempts to predict words using
other words in their immediate context, and for the
skip-gram technique, attempts to the do the inverse of
this. In attempting to predict words and contexts in
this manner, this approach gradually learns high-
dimensional vector representations for the words in
the language data. The vector representations are such
that words that often co-occur in the same context
have similar vectors. Using both the CBOW and skip-
gram techniques allows for high quality vectors
which can be trained relatively easily and quickly,
permitting the use of very large text corpora. These
techniques are also desirable as the vectors they
generate capture not just individual semantic charac-
teristics of the various words but also relationships
between words, which, in turn, facilitates analogical
reasoning and other types of more complex similarity-
based inferences.
Mikolov and colleagues at Google Research have

released a set of high-quality vectors trained using this
method, and we use these pretrained vectors for the
purposes of this paper. These vectors were generated
by applying the Word2Vec tool (available at https://
code.google.com/archive/p/word2vec/) on a corpus
of Google News articles with over 100 billion words.
They have a vocabulary of 3 million words and
phrases, with each word or phrase being defined on
300 dimensions. Bhatia (2017a) found that these vectors
performed very well in predicting high-level associa-
tive judgment. Bhatia (2018) also used these vectors to
predict associative biases in memory-based decision-
making. Although there are other sets of vectors that
achieved equivalent performance in Bhatia (2017a)
(notably the GloVe vectors of Pennington et al. 2014)
the Word2Vec vectors are unique in their ability to
specify multiword phrases in addition to individual
words. Thus, for example, these vectors have repre-
sentations for risk sources like “nuclear power,”which
is not the case for the GloVe vectors.
In the studies in this paper, we obtain 300-dimensional

vector Word2Vec vector representations for a large
number of risk sources and use these 300-dimensional
vectors to predict risk assignments and other judgments
for the corresponding risk sources. We also examine
Word2Vec vector representations for a large number of
other concepts that are not risk sources, and use the
proximity between the risk source vectors and the
concept vectors to better understand the emotional and
cognitive substrates of risk representation.
Note that in many ways, vector space semantic

models are refinements of multidimensional scaling
approaches that have already been applied to the
domain of risk perception (Johnson and Tversky 1984).
However, instead of using explicit similarity ratings
from participants, vector space models use similarities
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in word distributions in natural language. Indeed, one
of the earliest (and perhaps the most prominent) vector
space semantic models is latent semantic analysis
(Landauer and Dumais 1997). Latent semantic analysis
performs singular value decomposition on a word-
context co-occurrence matrix, to uncover latent di-
mensions describing the structure of variability inword
distribution in language (which is a simpler version of
the skip-gram and CBOW techniques used to derive
ourWord2Vec representations). Mathematically, this is
similar to performing a principal components analysis
on a matrix of word-word co-occurrence. Multidi-
mensional scaling, relatedly, involves a principal
components analysis on word-word similarity judg-
ments to uncover latent dimensions to describe the
structure of variability in word similarity (e.g., Kruskal
1964, Borg et al. 2012).

The close relationship between vectors space se-
mantic models like latent semantic analysis, and more
classic multidimensional scaling techniques, implies
that this paper can be seen as a continuation of previous
work (e.g., Johnson and Tversky 1984) that uses theories
of semantic representation to study the underlying
cognitive structures involved in risk perception and
evaluation. Unlike prior work, however, vector space
semantic models present a powerful new set of ad-
vantages. Not only are explicit participant data on
similarity ratings unneeded but also the use of very
large natural language data sets implies that such ap-
proaches possess rich and comprehensive representa-
tions for hundreds of thousands of words and phrases.
Analyzing these representations can shed light on the
many associations that people have for risk sources, and
by doing so, permit greater complexity, depth, and
generalizability in the study of risk perception.

Experimental Methods
Overview
We ran three core studies that elicited risk percep-
tion judgments from participants for a variety of risk
sources. Our primary goal was to use the Word2Vec
vector representations for these risk sources to both
predict the risk judgments of participants, and to
better understand the cognitive and emotional sub-
strates of these judgments. These three studies also
separately elicited participant ratings for the risk
sources on nine risk dimensions considered to play
a role in risk representation and evaluation (Fischhoff
et al. 1978). In our primary analysis, we examined the
power of our approach in predicting the risk judg-
ments of participants, and compared this with the
power of standard psychometric techniques applied
to participant ratings on the nine risk dimensions. In
a secondary analysis, we used our vector represen-
tations, combined with data from a free association

task to predict the participant ratings of the risk sources
on the nine dimensions.
The first two studies (studies 1A and 1B) served as

a preliminary test of our approach. In these studies, we
used a relatively small set of experimenter-generated
risk sources. Our second study (study 2) served as
the primary test of our approach. It involved a large
number of participant-generated risk sources, as well
as many ratings per risk source. Study 3 administered
the free association task, and the data from this study
were used to predict participant ratings of the risk
sources on the nine risk dimensions.

Participants and Procedures
All participants were recruited from Prolific Academic,
an experimental survey website. Participants were
residents of the United States with an approval rating of
90% or higher on Prolific Academic. They were paid at
a rate of approximately $7.50 an hour. The average age
across our studies was 31.23 (SD = 11.21) and 43% of
the participants were female.
In the risk perception task in studies 1A, 1B, and 2,

participants judged the riskiness of the risk sources on
a scale of −100 (safe) to +100 (risky). There were a total
of 73 participants and 125 different risk sources for
study 1A, and 79 participants and 125 different risk
sources for study 1B. Each participant rated each risk
source. In study 2, our primary study, there were 300
participants and 200 different risk sources. Each par-
ticipant was given 100 randomly chosen risk sources.
The order in which the risk sources were presented in
all three studies was randomized, and each risk source
rating was elicited on a separate screen.
In the dimensional ratings task in studies 1A, 1B, and

2, participants evaluated each of the risk sources on
nine dimensions of risk perception using a seven-point
scale. These dimensions were taken from Fischhoff
et al. (1978) (see also Slovic et al. 1984, Slovic 1987)
and correspond to the voluntariness, immediacy of
death, knowledge to the person exposed to the risk,
knowledge to science, controllability, novelty, the
catastrophic potential of the risk, the potential for fatal
consequences, and the amount of dread associatedwith
the risk source. In study 1A, there were 75 participants
and 125 risk sources for this task. Each participant rated
15 randomly selected risk sources on all nine risk di-
mensions, generating an average of nine ratings per
dimension per risk source. This was also the case for
study 1B. In study 2, there were 301 participants and
200 risk sources for this task. Each participant rated 20
randomly selected risk sources on all nine risk di-
mensions, generating an average of 30 ratings per risk
source. The ratings in all three studies were done item-
wise, so that participants rated each risk source on all
nine dimensions before proceeding to the subsequent
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risk source. The order in which the sources were
presented was randomized.

Participants in studies 1A, 1B, and 2 were given either
the risk perception task or the dimensional rating task.
Additionally, studies 1A and 1B were administered si-
multaneously (with random assignment to either 1A or
1B), whereas study 2 was administered a few months
later. Prior to running study 2, we ran a study 2 pretest
on 52 participants. The participants in this pretest were
each asked to generate 15 everyday sources of risk (five
with high risk, fivewith medium risk, and fivewith low
risk). We used the participant-generated risk sources in
this pretest as our stimuli in study 2 (see details below).

Finally, in study 3, 49 participants were asked to list
words that they associated with the nine dimensions
used in risk dimension ratings task. Specifically, each
participant was shown a description of the dimension
and asked to list threewords thatfirst came to theirmind,
when thinking of a risk source with that description.
These could be any words, including words describing
actual sources of risk, words describing emotions and
feelings, words corresponding to real world objects,
people and places, orwords describing abstract concepts.
For each dimension we used two descriptions, one cor-
responding to high values on that dimension and the
other corresponding to low values on that dimension.
Thus, for example, for the voluntariness dimension we
used “a risk source that individuals are exposed to
voluntarily” and “a risk source that individuals are ex-
posed to involuntarily” as the two descriptions, and each
of these two descriptions served as a separate cue in the
free association task. The nine dimensions generated

a total of 18 descriptions, which were administered in
a random order on separate pages to participants.
We had aimed for 150 total participants each in

studies 1A and 1B, 600 total participants in study 2, 50
participants each in the studies 2 pretest and study 3,
for a total of 1,000 participants across all our studies.
Although final sample sizes diverged slightly from
these numbers, we did not exclude any participants or
observations. We used large sample sizes to ensure
minimal noise in resulting aggregate risk ratings.

Stimuli
The stimuli used in study 1A consisted of a set of 125
technologies of varying risk levels (see Figure 1). This set
was experimenter-generated, and was based on the
technologies used in Slovic’s (1987) experiment. It con-
tained various common technologies, emerging tech-
nologies, military technologies, household appliances,
energy sources, drugs, and medical procedures. The
stimuli used in study 1B consisted of a set of 125 activities
of varying risk levels (see Figure 1). This set was also
experimenter-generated, and was based on the ac-
tivities in Slovic’s (1987) experiment. It contained
various hobbies, sports, and occupations. All items
used in studies 1A and 1B are present in theWord2Vec
vector vocabulary, implying that we were able to
obtain vector representations for the items for our
subsequent analysis.
The stimuli used in study 2, our primary study,

consisted of a set of 200 risk sources, of varying risk
levels. This set was generated in the study 2 pretest,
described above. The items obtained in this pretest

Figure 1. Scatterplot of the 432 Unique Risk Sources Used in Studies 1A, 1B, and 2, on the First Two Principal Components of
the Matrix of Vector Similarities for the Risk Sources
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Figure 1. (Continued)
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were pruned to select the 200most frequently listed risk
sources which were also present in the Word2Vec
vocabulary. Overall, the list of risk sources in study 2
was much more diverse than studies 1A and 1B, as it
was participant-generated without any category limi-
tations. It included a range of medical, technological,
social, political, climate-based, activity-based, and oc-
cupational risks.

Overall, there were a total of 450 risk sources across
our three studies. Out of this, 432 risk sources were
unique (the remaining 18 risk sources were gener-
ated by participants in study 2-pretest, but were also
contained in the set of stimuli used for studies 1A
and 1B). We had a 300-dimensional vector repre-
sentation for each of these risk sources, obtained
from the Word2Vec database, and we used these

Figure 1. (Continued)
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300-dimensional vectors to predict risk perceptions of
participants.

Prior to discussing our results, it is useful to briefly
explore what the vector representations for the risk
sources looked like. Of course, it is difficult to fully
visualize the 300-dimensional space within which
these representations reside. But we can project these
300-dimensional representations onto a two-dimensional
subspace, and use this subspace to understand the re-
lationships between the different risk sources. For this
purpose, we first calculated the cosine similarities be-
tween the vectors for each pair of risk sources in our
stimuli. This metric specifies the proximity between any
two vectors x and y by sim(x, y) = x∙y/(||x||∙||y||), and
ranges from −1 (for vectors with opposite directions) to
0 (for vectors that are orthogonal) to +1 (for vectors
with identical directions). This calculation resulted in
a 432 × 432 matrix with pairwise similarity measures
for our 432 unique risk sources. We performed a
principal components analysis on this matrix to extract
the two largest components of this matrix. Figure 1
presents a scatterplot of the 432 unique risk sources on
these two components, with risk source names for
four subregions of this scatterplot. This figure reveals
certain regularities in the representation of these
risk sources. For example, region 1 primarily consists
of hobbies and sports activities and region 4 consists
primarily of drugs andmedical risks. In regions 2 and
3, we frequently see clusters of related risk sources,
though these regions are somewhat less coherent.
This is likely because the two-dimensional projection
omits a lot of relevant information possessed by the
300-dimensional structure (this is also why it is difficult
to interpret the two first principal components in terms
of intuitive dimensions).

Predicting Risk Perception
Computational Methods
We began our analysis by examining how well our
vectors representations predicted the risk judgments of
participants, obtained in studies 1A, 1B, and 2. We did
this both on the aggregate level (for which we averaged
risk perceptions for each risk source to get a single
continuous measure of riskiness of the source), as well
as on the individual level. In both these cases, we had
a rating yi for a risk source i. We also had, for each
source, a 300-dimensional vector representing the
source. For source i, we write this vector as xi, where xij
is the value of the risk source on dimension j of the
corresponding Word2Vec vector.

Our goal was to predict yi from the xi. This is a type
of high-dimensional regression problem for which
there are more independent variables (300) than
there are observations (125 in studies 1A and 1B, and
200 in study 2; i.e., one observation for each risk

source). This dimensionality problem implies that
standard linear regressions are not feasible. Instead,
we must use techniques in machine learning that
have been shown to work well in these settings. We
use six different machine learning techniques. Our
first three techniques are support vector regressions,
which are able to learn nonlinear relationships be-
tween our Word2Vec vectors xi and our risk ratings yi.
These regressions use a “kernel trick” (which im-
plicitly maps the inputs xi into high-dimensional fea-
ture spaces) to permit nonlinearity. For the purposes of
this paper, we considered support vector regressions
with radial basis function kernels (SVR-RBF), poly-
nomial kernels (SVR-polynomial), and sigmoidal
kernels (SVR-sigmoid). We also considered two
other regression-based techniques with linear map-
pings: Lasso regression and ridge regression. These
two perform simple linear least squares, but penalize
the coefficients of the inputs xi based on their size
(for this reason, they are also sometimes known as
“regularized regressions”). The type of penalty ap-
plied by the lasso regression forces a large number of
regression coefficients to zero, and thus results in the
use of only a small subset of the vector dimensions
(this is not necessarily the case for ridge regression).
Our final technique was the k-nearest neighbors (KNN)
regression. In contrast to the other approaches, KNN
uses similarity with previous observations to predict yi
given a new observed xi. Thus, it can be seen as an
exemplar-based heuristic technique.
All of our techniques were implemented in the Scikit-

Learn Python machine learning library (Pedregosa
et al. 2011). There was one key metaparameter in our
implementation of the first five techniques. This pa-
rameter, C > 0, determines the size of the penalty on
large errors (it can be seen as a type of regularization
parameter). In our estimation, we allowed C to take
values in the set {10−2, 10−1, 100, 101, 102, 103, 104, 105,
106, 107} and evaluated the predictive power of
our various techniques for different values of C.
We also allowed one free metaparameter for our
implementation of KNN. This parameter, k > 0, de-
termines the number of nearest neighbors used in the
KNN regression, and was allowed to take on values in
the set {1, 2, . . . 10}. Both the best-fit mappings for these
six techniques, as well as the various metaparameters,
were inferred through cross validation (which we
describe in detail below). We needed to make addi-
tional assumptions when applying our techniques.
For simplicity we adopted all the default assumptions
of the Scikit-Learn library and avoided tweaking
or modifying the regression to improve our fits to
the data. Of course, it is likely that such modifications
or a more fine-grained search through our meta-
parameters would improve the performance of our
approach.
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It is also useful to compare the semantic vector ap-
proach outlined here to standard methods used in
research on risk perception. As discussed above, the
most common approach within the psychometric
paradigm involves regressing the ratings of the risk
sources on nine different dimensions of interest. To
apply this approach, we averaged the ratings for each
risk source on each dimension, elicited in our studies, to
get a single nine-dimensional vector of ratings for each
risk source. For source i, we write this vector as xi,
where xij is the average participant rating of the risk
source on dimension j. We then used a simple linear
regression to predict the perceived riskiness of the risk
sources, yi, from the corresponding xi.

We measured the predictive power of our fits for
both the six machine learning techniques that are part
of the semantic vector approach, and the linear re-
gression that is part of the psychometric approach,
using the coefficient-of-determination, R2, in out-of-
sample predictions. More specifically, we divided our
data set into 10 equal portions. We performed our fits
on the risk sources in the first nine portions and then
used the fitted models to predict risk assignments
for the risk sources in the tenth portion. This cross-
validation exercise was repeated 1,000 times, with
a random split at each time, to calculate the average
R2 for the out-of-sample predictions. The appendix
provides additional details of the methods outlined
above, with the help of an example.

Results: Comparing Approaches
Figures 2(a)–2(c) show the out-of-sample R2 for our
best-fitting SVR-RBF, SVR-polynomial, SVR-sigmoid,
lasso regression, ridge regression, and KNN re-
gression techniques on the semantic vectors for ag-
gregate risk perception judgments in our three studies.
They also plot the out-of-sample R2 for the psycho-
metric technique, which involves linear regressions on
participant ratings on the nine risk dimensions. Cross
validation ensures that our modeling avoids overfitting
and that performance is evaluated based on model
generalizability, rather than flexibility. It is also useful
to note that the two sets of approaches rely on different
sets of data (preexisting semantic vector representa-
tions versus explicit participant-generated ratings on
nine key risk dimensions).

For study 1A, the best performing technique for the
semantic vector approach, SVR-RBF, was able to
achieve a predictive accuracy rate of R2 = 0.50. This is
slightly lower than the predictive accuracy rate of R2 =
0.54 for the psychometric approach. There was
a somewhat larger discrepancy in the predictive ac-
curacy rates in study 1B. Although the semantic vector
approach achieved an accuracy rate of R2 = 0.58 with
the SVR-RBF and the ridge regression techniques, the
standard psychometric approach was able to predict

Figure 2. Accuracy at Predicting Out-of-Sample Aggregate
Risk Ratings Using Either Participant Ratings on Nine Risk
Dimensions (Psychometric Approach) or Machine Learning
Techniques Applied to Semantic Vectors
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behavior with an R2 = 0.74. Finally, in study 2, our
primary study, we found that the semantic vector
approach slightly surpassed the psychometric ap-
proach, with an accuracy rate of R2 = 0.72 for the SVR-
RBF and SVR-sigmoid techniques, compared with an
accuracy rate of R2 = 0.71 for the psychometric tech-
nique. The predictive power of the semantic vector
approach emerges despite the fact that it does not use
explicit participant ratings to quantify the values of
the risk sources on the relevant risk dimensions.

It is not immediately clear why there was a larger
discrepancy between the two approaches in the accu-
racy rates for study 1B compared with studies 1A and
2. One possibility is that these differences reflect stimuli
similarity. As discussed above, study 2 contained a very
diverse set of participant-generated stimuli. Study 1A
also contained a wide range of different types of tech-
nologies (including medicines, household appliances,
and energy sources). In contrast, study 1B consisted of
mainly hobbies and sports as well a few occupations.
Although stimuli similarity is likely to improve the out-
of-sample predictive power of both sets of approaches, it
is perhaps more beneficial for approaches that rely on
participant evaluations, as with the standard psycho-
metric paradigm: Participant ratings in the psychometric
tasks are less variable and more internally coherent with
similar or comparable risk sources.

In addition to allowing us to compare the semantic
vector approach against the psychometric approach,
the above tests also permit a comparison between
different machine learning techniques for using the
semantic vectors. As shown in Figures 2(a)–2(c), the
SVR-RBF, SVR-sigmoid, and the ridge regressions
are consistently the top techniques, and achieve almost
the same accuracy rates in the three studies. In contrast,
the SVR-polynomial, lasso regression, KNN regres-
sions achieve much lower accuracy rates.

We obtain very similar results when attempting to
predict individual-level risk perception data, with two
important caveats. First, the average accuracy rates for
both the semantic vector approach and the psycho-
metric approach are smaller than the analogous rates
for predicting aggregate data. Second, the discrepancy
between the semantic vector and the psychometric
approach for study 1B is diminished. Overall, for all
three studies, we find statistically indistinguishable
average accuracy rates for the psychometric approach
compared with the best performing machine learning
technique applied to the semantic vectors (p > 0.05 for
all three studies when comparing individual-level ac-
curacy rates with a t-test). Again, out of the six machine
learning techniques, SVR-RBF, SVR-sigmoid, and the
ridge regression, are consistently the top techniques for
the three studies. These results are illustrated in
Figures 3(a)–3(c).

Figure 3. Accuracy at Predicting Out-of-Sample Individual-
Level Risk Ratings Using Either Participant Ratings on
Nine Risk Dimensions (Psychometric Approach) or
Machine Learning Techniques Applied to Semantic
Vectors

Note. Error bars represent ±1 SE for individual-level accuracy rates.
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Results: Combining Approaches
The above analysis attempted to directly compare the
proposed semantic vector approach against the stan-
dard psychometrical approach, in order to establish the
relative predictive power of the semantic vector ap-
proach. However, it is likely that the two approaches
are in fact complementary and that the highest
accuracy rates can be attained by combining the 300-
dimensional vector representations with the nine-
dimensional participant risk ratings. Such an analysis
would attempt to predict the aggregate or individual-
level participant risk rating yi for each risk source iwith
a 309-dimensional vector xi. Here, xij would be the
value of the risk source on the jth semantic vector di-
mension for j ≤ 300. For 301 ≤ j ≤ 309, j would capture
the rating of the risk source on 300-jth dimension of the
risk dimension rating task.

We implemented the combined analysis using the
six machine learning techniques and cross-validation
procedure described above. The results of this analysis
are plotted in Figures 4(a)–4(c) for predictions on ag-
gregate data, and Figures 5(a)–5(c) for predictions on
individual-level data, alongside the highest out-of-
sample R2 values from just the semantic vector ap-
proach and just the psychometric approach. Here, we
see that the 309-dimensional vectors, comprising both
the semantic vector representations and participant
dimension ratings, greatly exceeded the predictive
power of the two sets of independent variables alone.
Overall, we were able to achieve out-of-sample ac-
curacy rates of R2 = 0.74, R2 = 0.83, and R2 = 0.86 for
studies 1A, 1B, and 2 on the aggregate data, and av-
erage out-of-sample accuracy rates of R2 = 0.37, R2 =
0.50, and R2 = 0.52 for studies 1A, 1B, and 2 on the
individual data. Note that in the latter case, the accu-
racy rates obtained using the combined semantic vector
and psychometric ratings data are significantly higher
than the accuracy rates obtained using either the se-
mantic vectors or the psychometric ratings alone (p <
0.01 for all three studies using a t-test on individual-
level accuracy rates). These high accuracy rates suggest
that the information contained in the semantic vectors
and the information elicited through the dimension
ratings task are complementary and that both play
a somewhat independent role in predicting the risk
evaluations of participants. In a later section we will
examine the relationship between these two types of
representations in more detail.

Risk Associations
Computational Methods
The analysis in the previous section showed that the
300-dimensional vector representations for the risk
sources can be mapped accurately onto the risk judg-
ments of participants. In this section we wish to better

Figure 4. Accuracy at Predicting Out-of-Sample Aggregate
Risk Ratings Using Machine Learning Techniques Applied
to a Combination of Semantic Vector Representations and
Participant Ratings on Nine Risk Dimensions

Note. For comparison, “Psychometric only” and “Sem. Vec. only
(best)” indicate accuracy rates using only the psychometric
approach and using only the best-performing semantic vector
approach (taken from Figure 2).
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understand the conceptual underpinnings of this
mapping. What are the features of the risk represen-
tations that best predict participant risk judgments?
One way to address this question would be to ex-

amine the relative weights assigned to the 300 vector
dimensions by our variousmachine learning techniques,
so as to understand the dimensions with the greatest
influence on risk perception. However, the dimensions
themselves do not have an intuitive interpretation, and
such an analysis is unlikely to yield intuitive results.
A better solution to this issue thus involves analyzing
many of the other words and phrases that are present in
the Word2Vec vocabulary. Each of these words is de-
scribed with a 300-dimensional vector, and we can use
vector distance to determine the associations between
these other words and our various risk sources. Sub-
sequently, we can map the words themselves onto our
participants’ risk ratings, to determine the words with
the strongest association with risk.
For the analysis in this section we specified the as-

sociation between words and risk sources using the
cosine similarity metric introduced above. For a risk
source iwith vector si and a word jwith vectorwj, this
metric gives us sim(si, wj) = si∙ wj/(||si||∙||wj||), which
ranges from –1 to +1. Now recall that we have risk
ratings for each risk source, and thus for each word we
can calculate the correlation between its associations
with the risk sources and the risk ratings of the risk
sources. More specifically for each word j, we can
measure the correlation between sim(si, wj) and yi,
using all the risk sources i in the given study. This risk
association value captures how strongly the word is
associated with risk sources high in risk relative to risk
sources low in risk. Words with the highest risk as-
sociations are words that are disproportionately as-
sociated with risk sources that are rated as being
extremely risky. The appendix provides additional
details of our approach, with the help of an example.

Results: Common Words
As a first test we considered a list of 5,000 words with
the greatest frequency in American English, obtained
from the corpus of contemporary American English
(http://corpus.byu.edu/coca/). All, except for 18, of
these 5,000 words are present in our Word2Vec vo-
cabulary, and we were able to obtain vector repre-
sentations for these words and subsequently calculate
the risk associations of the words, using the techniques
specified above. Figures 6(a)–6(c) show word clouds of
words with the strongest risk associations for each of
the three studies. These word clouds each take the 50
words with the strongest risk associations, exclude all

Figures 5. Accuracy at Predicting Out-of-Sample
Individual-Level Risk Ratings Using Machine Learning
Techniques Applied to a Combination of Semantic Vector
Representations and Participant Ratings on Nine Risk
Dimensions

Notes. For comparison, “Psychometric only” and “Sem. Vec. only
(best)” indicate accuracy rates using only the psychometric
approach and using only the best-performing semantic vector
approach (taken from Figure 3). Error bars represent ±1 SE for
individual-level accuracy rates.
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words that refer to the risk sources used in the three
studies, and pool together identical words with dif-
ferent syntactic roles (e.g., “abuse” as a noun and
“abuse” as a verb) resulting in around 30 words in each
cloud. The font size of the words maps linearly to the
computed risk association, so that larger words in the
word clouds are more associated with risk.

These figures show numerous distinct conceptual
associates of risk. Some of the associates occurred in
multiple studies (e.g., “fatal,” “dangerous,” and “tragic”).
These likely reflect common features of risk across dif-
ferent risk domains. Indeed, there were substantial
similarities in the risk associations of words across our
three studies. For example, the risk associations for
the 5,000 words in study 1A and the risk associations
for these words in study 1B were correlated with
a strength of ρ = 0.28 (p < 0.001). The analogous
correlations between studies 1A and 2 and between
studies 1B and 2 were ρ = 0.50 (p < 0.001) and ρ = 0.28
(p < 0.001). Thus, on aggregate, our approach finds
that a similar set of words tend to be associated with
risk across the three data sets.
That said, many of the associates in Figures 6(a)–6(c)

are also unique. This likely reflects the differences in
underlying stimuli. Study 1A had unique associates
like “drug,” “disorder,” and “substance,” corresponding
to the relatively large number of medical risks (drugs,
medical procedures) present in the stimuli set. Study 1B,
which involved various risky sports and occupations
had unique associates like “crash,” “combat,” and
“helmet.” Study 2, involved participant-generated risk
sources, and had unique associates like “terror,” “vi-
olence,” and “bombing” (perhaps reflecting the con-
temporary focus on terrorist attacks and related forms
of geopolitical conflict).

Results: Emotion Words
Although the word clouds in Figures 6(a)–6(c) provide
us with an intuitive understanding of the close
associates of risk, a more rigorous analysis would use
the above techniques to quantitatively specify the risk
association for a number of different psychological
variables of interest. Such an analysiswould also compare
various psychological variables against each other, to
determine the variables with the greatest relationship
with the perception of risk. Ideally, such an analysis
should also reveal consistent effects for the psycho-
logical variables considered, across our three studies.
We first attempted this analysis for a list of six

emotions commonly studied in psychology: anger,
disgust, happiness, fear, sadness, and surprise.
Emotional processing has been strongly implicated in
the perception of risk and the proposed analysis can
be used to examine which emotions have the strongest
associations with risk. For this purpose, we used
a database of English language words with binary
ratings (1 if the word is related to the emotion in
consideration; 0 otherwise) on the six emotions
(Mohammad and Turney 2013). This database was
generated by a large-scale crowdsourced study on
Amazon Mechanical Turk, and consists of over 14,000
words. For each of these words we used the techniques
specified at the start of this section to generate ameasure

Figure 6. Word Cloud of Words with the Strongest Risk
Associations for Each of the Three Studies
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of risk association. We then tested how well this mea-
sure predicted the emotion rating of the word. This was
done with logistic regressions, applied individually to
each emotion. These regressions set the emotion of the
word as the dependent variable (1 if theword is linked to
the corresponding emotion in the Mohammad and
Turney emotion ratings data set, and 0 otherwise) and
the risk association of the word as the independent
variable. The coefficients obtained from these re-
gressions capture the relationship between the emo-
tions and the risk associations of the words. Large
positive coefficients indicate emotions that are most
likely to be elicited by the conceptual associates of
risk, and thus emotions that are most likely to be
present when individuals give high risk evaluations.
Large negative coefficients indicate emotions that are
least likely to be elicited by the conceptual associates
of risk, and thus emotions that are least likely present
when individuals give high risk evaluations. The
appendix provides additional details of our approach,
with the help of an example (see also Garten et al.
2017, Pennebaker et al. 2001 for a discussion of related
techniques).

The results of these six regressions for the three
studies are displayed in Figures 7(a)–7(c) (and details of
regression outputs are provided in Table 1). These
figures present bar plots with regression coefficients for
each of the regressions. These three figures reveal strong
regularities across our studies. As expected we obtained
a positive regression coefficient fornegative emotions
(anger, disgust, fear and sadness) and a negative re-
gression coefficient for positive emotions (happiness).
This corresponds to prior work showing that negative
affect leads to increased perceptions of risk relative to
positive affect (e.g., Johnson and Tversky 1983). Addi-
tionally, we obtained systematic differences across the
emotions: Across all studies, fear was the emotion with
the strongest positive relationship with risk judgment.
Although anger was also significantly associated with
risk for all three studies, the strength of its effect was
much milder. Other negative emotions like disgust
and sadness did not have significant effects in all our
studies. This again corresponds to prior results show-
ing that fear is the emotion with the strongest effect
on the perception of risk (Lerner and Keltner 2001,
Loewenstein et al. 2001, Lerner et al. 2003, Slovic and
Peters 2006).

Results: Concreteness
To illustrate the broad applicability of the approach
outlined in this paper, we applied it to another psy-
chological variable: concreteness/abstraction. Al-
though risk perception is not often studied in terms of
concreteness, some prior work does suggest that risk
sources that vary in terms of their concreteness could
be associated with different levels of riskiness. For

example, temporal distance, an important determinant
ofwhether objects and events are construed concretely or
abstractly, has been shown to influence risk perception
(Chandran andMenon 2004, Trope and Liberman 2010).
Particularly, risks communicated as being temporally
proximate are imagined more concretely and are
considered more probable. Relatedly, vividness has
been shown to play a key role in the strength of
emotional responses to stimuli, subsequently influ-
encing risk perception: risks that are vivid elicit
stronger feelings and (if the feelings are negative) are
considered to be more likely (Loewenstein et al. 2001).

Figures 7. Coefficients for Logistic Regressions of Emotions
on Risk Associations

Notes. Positive coefficients indicate emotions that are most likely to
be elicited by the conceptual associates of risk. Error bars capture 95%
confidence intervals for regression coefficients.
***p < 0.001; **p < 0.01; *p < 0.05.
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The relationship between concreteness and risk per-
ception can also go in the opposite direction. One of the
two core dimensions underlying risk perception in-
volves the knowledge of the risk, and risk sources that
are unknown to the individual exposed to the risk or
unknown to science are considered to be riskier (Slovic
1987). As concrete risk sources are easier to imagine and
are thus more “known” it is possible that concreteness
actually has a negative effect on risk perception.

We tested the relationship between risk perception and
concreteness using a data set of concreteness word rat-
ings compiled by Brysbaert et al. (2014). This data set has
participant ratings for 40,000 English words on a scale of
1 (abstract) to 5 (concrete). Of these 40,000 words, 34,121
are present in our Word2Vec vocabulary. For each of
these words it is possible to compute the risk association
with the risk assignments of participants in studies 1A,
1B, and 2, and subsequently regresses the concreteness
of the words on their risk association measures.

Table 2 displays the coefficients obtained from these
linear regressions for studies 1A, 1B, and 2. These
coefficients specify the relationship between the con-
creteness of a word and its association with risk for the
three studies. Although risk had a highly significant
relationship with concreteness, the direction of the
relationship varied across the three studies. In study 1A
and 2, there was a significant negative coefficient,
showing that more abstract words were associated
with higher risks. In study 1B, however, we observed

a significant positive coefficient, showing that more
concrete words were associated with higher risks.
This is likely due to the stimuli in these three studies.
Study 1A used primarily technological risks. Abstract
technologies are typically less known and could be
subsequently considered to be riskier. This is also
the case for study 2, which had both a large number
of technologies and various geopolitical risk factors.
In contrast, the stimuli set for study 1B comprises
hobbies, sports, and occupations. Physical activities are
more concrete than are intellectual activities. Physical
activities are also riskier, likely accounting for the
positive relationship observed for this study.

Predicting Ratings of Risk Dimensions
Computational Methods
The analysis reported in the previous section used data
sets of word ratings on emotional and concreteness
variables to examine the conceptual associates of risk.
We can also apply a similar technique to test the degree
to which the nine key risk dimensions (Fischhoff et al.
1978) were associated with risk judgment, as assessed
by the vector space semantic models. Specifically, our
three studies elicited actual participant ratings of the
risk sources on the nine dimensions, and we can
predict these ratings with our uncovered associations.
This exercise would provide a strong test of whether
conceptual associates of risk obtained through the
proposed approach correspond to actual human as-
sociations studied in risk perception research.
Now unlike emotions and concreteness there is no

existing data set of word ratings for the nine risk di-
mensions. Thus, in study 3, we used a free association
task to elicit sets of words that are closely associated
with the nine dimensions, and then used the calculated
vector similarity between our risk sources and these
words to predict the dimensional ratings of partici-
pants in studies 1A, 1B, and 2. As outlined in the
experimental methods section, the free association
task in study 3 showed participants 18 descriptions,
and for each description, participants listed words
that first came to their mind. Two descriptions for each
risk dimension correspond to high and low ratings
on the dimension (specifically, voluntary versus in-
voluntary, immediate versus delayed, known vs

Table 2. Details for Regressions of Concreteness Ratings on
Word Risk Associations for the Three Studies

Coef. SD z p 95% CI-L 95% CI-H

Study 1A −1.26 0.03 −43.02 0.00 −1.32 −1.20
Study 1B 0.78 0.03 27.99 0.00 0.72 0.83
Study 2 −1.27 0.03 −42.82 0.00 −1.33 −1.21

Notes. Here, positive coefficients indicate a positive relationship
between word concreteness and risk. Coef., coefficient; CI,
confidence interval (L = Lower, H = Higher).

Table 1. Details for Regressions of Emotion Ratings on
Word Risk Associations for the Three Studies

Coef. SD z p 95% CI-L 95% CI-H

Study 1A
Anger 1.94 0.39 4.96 0.00 1.18 2.71
Disgust 1.67 0.36 4.67 0.00 0.97 2.37
Happiness −3.68 0.52 −7.04 0.00 −4.71 −2.66
Fear 3.12 0.37 8.53 0.00 2.40 3.83
Sadness 0.78 0.35 2.24 0.03 0.10 1.46
Surprise 0.15 0.54 0.27 0.79 −0.92 1.21

Study 1B
Anger 0.82 0.37 2.24 0.03 0.10 1.53
Disgust 0.56 0.34 1.67 0.10 −0.10 1.22
Happiness −2.13 0.49 −4.36 0.00 −3.09 −1.17
Fear 3.15 0.34 9.20 0.00 2.48 3.83
Sadness 0.19 0.33 0.57 0.57 −0.46 0.83
Surprise 0.54 0.52 1.04 0.30 −0.47 1.55

Study 2
Anger 3.12 0.41 7.55 0.00 2.31 3.94
Disgust 0.01 0.35 0.02 0.98 −0.69 0.70
Happiness −5.06 0.53 −9.48 0.00 −6.11 −4.01
Fear 4.36 0.39 11.06 0.00 3.59 5.14
Sadness 0.97 0.35 2.77 0.01 0.29 1.66
Surprise 0.30 0.55 0.55 0.58 −0.77 1.37

Notes. Here, positive coefficients indicate emotions that have
a positive relationship with risk, and negative coefficients indicate
emotions that have a negative relationship with risk. Coef., coefficient;
CI, confidence interval (L = Lower, H = Higher).
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unknown to individual exposed to the risk, known
versus unknown to science, controllable versus un-
controllable, new versus old, chronic versus cata-
strophic, risk that individuals can reason about
calmly versus one for which they experience dread,
and nonfatal versus fatal). With three listed words per
participant per description, we obtained a set of 2,700
(nonunique) word associates for the nine risk di-
mensions. Out of these, 2,646 words were in the
Word2Vec vocabulary. For each of these words we
knew whether the word was positively associated
with the dimension (e.g., listed for the “involuntary”
description), negatively associated with the di-
mension (e.g., listed for the “voluntary” description),
or unassociated with the dimension (e.g., listed for
some other description). We subsequently calculated
the association of the risk sources with each dimension
using the relative cosine similarities of the semantic
vectors for the risk sources with the free associates.
Thus, for a given risk source i and a given dimension j,
we calculated the average of the cosine similarities of
the semantic vector for the risk source with the se-
mantic vectors for the words that were positively as-
sociated with the dimension. We also calculated the
average of the cosine similarities of the semantic vector
for the risk source with the semantic vectors for the
words that were negatively associated with the di-
mension. The difference between these two gave us
a measure of the relative strength of association of the
risk source with the risk dimension. We repeated this
for all risk sources i and all dimensions j to obtain
predicted associations between the risk sources and the
dimensions.

Results
How well do our predicted associations describe the
actual associations of participants? In studies 1A, 1B, and
2, we obtained participant ratings of the risk sources on
the nine dimensions. Like in the earlier analysis in this
paper, these ratings were averaged to generate a single
rating for each risk source on each dimension. We then
regressed our participant ratings on the predicted asso-
ciations for each of the nine dimensions.

Figures 8(a)–8(c) plot the coefficients from each of
these regressions for our three studies (and Table 3
provides detailed outputs of these regressions). As can
be seen in these figures, our predicted associations
were positively related to participant ratings for all
dimensions and all studies. Out of these, all except for
unknown to science in studies 1A and 1B, and un-
known to the individual exposed to the risk, in study 1B,
reached statistical significance. Overall, these results
indicate that for the vast majority of dimensions
in our three studies (and for all dimensions in our
primary study, study 2) we are able to quantitatively

predict the ratings of the risk sources on the dimensions,
using our semantic vectors and the free associations of
participants with the dimensions.

General Discussion
Predicting Risk Perception
People’s knowledge about the world around them
determines how they evaluate its objects and events.
These evaluations form the basis of decisions made by
individuals and societies. To predict (and subsequently
understand and influence) people’s decisions, we there-
fore need to uncover and quantify people’s knowledge
representations.

Figure 8. Coefficients for Regressions of Participant Ratings
on the Predicted Associations for Each of the Nine Risk
Dimensions

Notes. Error bars capture 95% confidence intervals.
***p < 0.001; **p < 0.01; *p < 0.05.
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This paper has attempted this in the context of risk
perception (Fischhoff et al. 1978, Slovic 1987, Fischhoff
1995, Slovic and Weber 2002, Slovic and Peters 2006). It
has exploited recent advances in data science involving
the automated recovery of knowledge representations
for real-world object and events, from natural language
data (Dhillon et al. 2011, Griffiths et al. 2007, Jones and
Mewhort 2007, Landauer and Dumais 1997, Mikolov
et al. 2013, Pennington et al. 2014). Such knowledge
representations are often specified as high-dimensional
vectors, and these vectors have been shown to predict
responses in wide array cognitive, linguistic, and high-
level judgment tasks (for reviews, see Bullinaria and Levy
2007 or Jones et al. 2015). Across three studies, involving
over 400 experimenter and participant-generated sources
of risk, we have found that high-dimensional vector
representations of risk sources (specifically, those gen-
erated by the Word2Vec methods of Mikolov et al. 2013)
also predict the risk levels assigned to those risk sources
by participants, both on the aggregate and the individual
level. On the aggregate level, our accuracy rates are

comparable to those of existing psychometric techniques
(Fischhoff et al. 1978, Slovic et al. 1984, Slovic 1987) in
studies 1A and 2, which involve a diverse array of
technological and geopolitical risk sources. In study 1B,
which involves risky activities and hobbies, the relative
predictive power of our approach is somewhat lower.
On the individual-level, these differences diminish, with
both the psychometric and the semantic vector ap-
proaches attaining equivalent accuracy rates. Future work
should attempt to better understand the relative merits of
the proposed semantic vector approach and provide
amore rigorous characterization of the settings inwhich it
is likely to exceed or fall short of the accuracy of existing
psychometric methods in risk perception research.
Regardless of the relative accuracy rates of the se-

mantic vector and the psychometric approaches, the
highest accuracy in all three of our studies, both on the
aggregate and on the individual level, is achieved by
combining the two approaches. For example, in study 2,
our primary study, using both semantic vectors and
participant risk ratings allows us to predict over 85%
of the variability in our aggregate out-of-sample data.
This indicates that vector space knowledge represen-
tations complement the types of representations ob-
tained through psychometric tasks, and the two
techniques can be used together to best predict lay
assessments of risk.
The results of our tests also shed light on the specific

machine learning techniques that could be used for
predicting risk ratings using semantic vectors as inputs.
We have found that the techniques that consistently
achieve the highest accuracy rates are support vector
regressions with the radial basis function and sig-
moidal kernels and ridge regressions. However, the
reason for the superiority of these techniques is unclear,
and more work is necessary to better understand the
linguistic, behavioral, and statistical properties our
results. This work could involve an analysis of the
relationship between predictive accuracy for each
technique and the risk domain, as well as a test of the
nonlinearities involved in mapping semantic vector
representations onto participant judgments. This
analysis would also benefit from a learning curve test,
which systematically varies the proportion of the data
used to fit the models. Such a test may reveal that
different methods excel with different amounts of data,
which would help guide future applications of the
semantic vector approach.

Associates of Risk
Although the semantic vector approach does not require
explicit participant similarity ratings between risk
sources, it can nonetheless be seen as an extension of
existing techniques like multidimensional scaling. As
with multidimensional scaling (Johnson and Tvesrky
1984; see also Kruskal 1964, Borg et al. 2012) our

Table 3. Details for Regressions of Participant Ratings on
the Predicted Associations for Each of the Nine Dimensions
for the Three Studies

Coef. SD z p 95% CI-L 95% CI-H

Study 1A
Involuntary 0.38 0.05 7.79 0.00 0.29 0.48
Delayed 0.12 0.03 4.42 0.00 0.07 0.18
Unknown 0.13 0.05 2.34 0.02 0.02 0.23
Unknown-sci 0.03 0.03 0.95 0.34 −0.03 0.08
Uncontrollable 0.25 0.04 5.85 0.00 0.16 0.33
Old 0.22 0.04 5.74 0.00 0.15 0.30
Catastrophic 0.11 0.02 5.96 0.00 0.08 0.15
Dread 0.22 0.05 4.20 0.00 0.11 0.32
Fatal 0.25 0.03 7.93 0.00 0.19 0.32

Study 1B
Involuntary 0.06 0.03 2.37 0.02 0.01 0.11
Delayed 0.16 0.04 3.47 0.00 0.07 0.24
Unknown 0.10 0.06 1.78 0.08 −0.01 0.21
Unknown-sci 0.05 0.04 1.34 0.18 −0.02 0.12
Uncontrollable 0.11 0.04 2.57 0.01 0.03 0.20
Old 0.11 0.03 3.19 0.00 0.04 0.18
Catastrophic 0.11 0.03 3.15 0.00 0.04 0.18
Dread 0.15 0.05 3.38 0.00 0.06 0.24
Fatal 0.25 0.05 5.40 0.00 0.16 0.34

Study 2
Involuntary 0.35 0.02 18.91 0.00 0.33 0.41
Delayed 0.16 0.01 11.08 0.00 0.13 0.19
Unknown 0.10 0.02 4.89 0.00 0.06 0.14
Unknown-sci 0.04 0.02 2.50 0.01 0.01 0.07
Uncontrollable 0.29 0.02 16.74 0.00 0.25 0.32
Old 0.16 0.03 5.53 0.00 0.10 0.22
Catastrophic 0.14 0.01 13.65 0.00 0.12 0.16
Dread 0.25 0.02 10.66 0.00 0.19 0.28
Fatal 0.26 0.02 13.60 0.00 0.22 0.30

Notes. Here, positive coefficients indicate a positive relationship
between predicted associations and participant ratings. Coef.,
coefficient; CI, confidence interval (L = Lower, H = Higher).
Unknown-sci, unknown to science.
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approach attempts to use latent dimensions of con-
cept representation to predict the risk perceptions of
individuals. Additionally, these dimensions are un-
covered based on similarity measures (applied to
word co-occurrence statistics in natural language).
Indeed, similarity between the vector representations
for the risk sources reflects the actual similarity of the
risk sources, as indicated in Figure 1.

One key difference between the semantic vector ap-
proach and multidimensional scaling involves the fact
that similarity can be computed not only between the
vectors for two risk sources but also between the vectors
of risk sources and the vectors for other words and
concepts. Thus it is possible to uncover the set of words
that are most associated with a given risk source, and
subsequently uncover the words and concepts with
the overall strongest association with risk. We have
attempted to do this in all three of our studies. Our
analysis finds that the words and concepts with the
strongest risk associations are often those that have been
previously implicated in risk perception (e.g., “fatal,”
“dangerous,” and “tragic”).Many of these associates are
shared across the three studies, reflecting domain gen-
eral characteristics of risk. Yet other associates are unique
to the studies, corresponding to the idiosyncratic fea-
tures of the risk sources in consideration. Overall,
however, the risk association of the words across our
three studies is highly correlated, indicating that there
are some commonunderlying associations at play in risk,
regardless of the specific risk sources in consideration.

It is useful to note our vectors do not possess explicit
information for the outcomes and probabilities (e.g.,
probability distribution over number of deaths) for the
risk sources. They only have association-based repre-
sentations, which are themselves based on the structure
of word co-occurrence in natural language. The fact that
such representations are able to provide such a good
account of human judgment indicates that lay risk
perception is largely associative. Many scholars have
already highlighted the associative nature of risk per-
ception (Loewenstein et al. 2001, Slovic et al. 2002, Slovic
and Peters 2006). Additionally, in recent work, Bhatia
(2017a) has shown how semantic vectors are able to
quantitatively predict high-level associative judgments
(see also Holtzman et al. 2011; Dehghani et al. 2014;
Bhatia 2017a, b; Caliskan et al. 2017; Garten et al. 2017;
Bhatia 2018; Bhatia et al. 2018 for applications to social
and political judgment and decision-making). The
findings of this paper further emphasize the key role of
associations in many high-level judgment tasks and
demonstrate the desirability of vector space represen-
tations for modeling behavior in these tasks.

Uncovering the conceptual associates of risk also
allows us to study the relationship between risk per-
ception and various psychological variables of interest.
We have attempted to do so with three important sets

of variables. The first of these involves six emotions:
anger, disgust, happiness, fear, sadness, and surprise.
Mohammad and Turney (2013) have compiled mea-
sures of the emotionality of a very large list of words,
in terms of these six emotions, and it is possible to
correlate the emotional rating of a word with the
strength of association of that wordwith risk. Across all
three of our studies, we found that the emotions with
the strongest relationships with risk are fear and
happiness. Specifically, the more closely associated
aword is with a risk source, the more likely it is that the
word is fear related and the less likely it is that the
word is happiness related. We also found a positive
relationship between the risk association of words and
the anger-relatedness of the words, but this relation-
ship was not as robust. Overall, these results corrob-
orate existing findings on the relationship between risk
perception and emotions (Johnson and Tversky 1983;
Holtgrave and Weber 1993; Lerner and Keltner 2001;
Loewenstein et al. 2001; Lerner et al. 2003; Slovic et al.
2002, 2005; Slovic and Peters 2006).
The second set of psychological variables we con-

sidered involved concreteness and abstraction. As with
our analysis of emotions, we had concreteness ratings
for a large number of words (compiled in a data set by
Brysbaert et al. 2014) and were able to correlate the risk
association of the word with its concreteness rating.
Unlike in our previous analysis, we found different
effects for our three studies. In studies 1A and 2, con-
creteness was negatively associatedwith risk, so that the
words with the highest risk association were the words
that were the most abstract. These studies involved
technological and geopolitical risks, and it is likely that
the abstraction of the risk source correlates with the
uncertainty of the risk source, thereby increasing per-
ceptions of risk in this domain. In contrast, in study 1B,
concreteness was positively associated with risk, so that
the words with the highest risk associations were the
words that were the most concrete. This study involved
activity-based risk, and concrete activates are also more
physical and thus more dangerous than abstract activ-
ities, potentially explaining the observed relationships.
These results suggest that there are some important
domain-level differences in the conceptual associates of
risk. They also make novel predictions regarding the
effect of concreteness and abstraction on risk, which can
be tested in future experimental work.
The final set of variables we examinedwere the nine

key risk dimensions themselves (Fischhoff et al. 1978,
Slovic et al. 1984, Slovic 1987). For this purpose, we
elicited free associations from participants for each of
these dimensions. Using the words generated in this
free association task, we were able to categorize each
risk source as being positively or negatively associ-
ated (or unassociated) with the risk dimension. We
compared participant evaluations of the risk sources
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on these dimensions (obtained in studies 1A, 1B, and
2) with our predicted associations and found a posi-
tive relationship for nearly all risk dimensions in all
studies.

Overall, these results suggest that vector space
representations for risk sources can be used not only to
predict the risk assignments of participants but also to
understand their conceptual associates and psycho-
logical underpinnings. Of course, there are limitations
to using this method. For example, it is impossible to
disentangle causality. All we can say is that words
associated with risk sources are also associated with
other psychological variables (such as fear). A more
nuanced understanding of the role of these psycho-
logical variables in risk perception thus necessitates
experimental research. Nonetheless, these results
highlight the richness of vector space representations
and show novel ways for using these representations
to uncover the mental structures involved in the per-
ception of risk for real-world objects.

Language of Risk
A key assumption of the approach proposed in this
paper is that the language of risk matters. Prior ex-
perimental work has repeatedly shown that percep-
tions of risk depend on the words used to describe the
risk source (see, e.g., Fischhoff 1995 for a review). What
is new in this paper, however, is the way in which
language influences risk representations and sub-
sequent risk perceptions. Risk sources that co-occur
with a certain set of words in everyday language are
also likely to have vector representations that are more
proximate to those words in the resultant semantic
space. As the point a risk source occupies in the se-
mantic space determines its eventual mapping onto
risk ratings, changing how a risk source is described in
natural language has a direct impact on whether we
predict that it will be judged as being risky. For ex-
ample, if positron emission tomography (PET) is de-
scribed as “nuclear medicine” in our underlying
language data set (as it was in the early days of the
technology) then the resultant vector representation for
PET would be closer to other applications of nuclear
technology (like bombs). If these other applications are
rated to be highly risky, then our approach would
generalize this to predict that PET also would be
considered to be risky.

The relationship between risk perception and lan-
guage, implicit in our approach, can also contribute to
development of better surveys for eliciting risk judg-
ments. The words used in these surveys critically in-
fluence participant responses, and the approach
proposed in this paper provides a formal technique for
modeling this relationship. Indeed, with the help of
the approach in the current paper it also may be
possible to add diagnostic survey questions to existing

psychometric tools, for example, by identifying words
that most likely to relate to risk-relevant representa-
tions. Examining the feasibility of this application is
a useful topic for future work.

Computational Analysis of Risk Perception
Perhaps the greatest benefit of the proposed approach,
compared with existing psychometric techniques, is
that it does not require additional participant data. The
high predictive accuracy rates are achieved without
previously elicited participant dimensional ratings or
similarity judgments. Rather, they are a product of the
computational analysis of large amounts of natural
language data. This offers the semantic vector ap-
proach a number of unique advantages for modeling
and predicting risk perception. Firstly, our approach is
able to make out-of-sample predictions: it is possible to
train our models on a list of risk sources and use these
trained models to estimate risk perceptions for a range
of other novel risk sources (without having additional
data on these novel sources). Thus, we can identify
whether a hypothetical new technology would be
perceived as being more or less risky than the one
currently in place. Indeed, using the techniques out-
lined in this paper, it is possible to generate a risk map
for thousands of potential sources of risk, including not
only traditional risk sources but also novel hazards not
traditionally viewed as risks (e.g., social media) as well
as for prosaic items that may, from time to time, be
considered to be risky (e.g., beef). Such a riskmapwould
be difficult to compile if participants had to explicitly
rate each (real or hypothetical) risk source on various
risk dimensions. Numerous researchers have argued
for the necessity of out-of-sample predictive power
in modeling judgment and decision-making (Dawes
et al. 1989, Gigerenzer and Brighton 2009; Erev et al.
2017, Plonsky et al. 2017; see also Yarkoni andWestfall
2017 for a general discussion), and this paper can be
seen as addressing this issue in the domain of risk
perception.
The automated nature of our analysis also allows us to

examine the conceptual associates of risk on a much
larger scale than is feasible with human data alone. In-
deed, in our tests, we have calculated the risk association
of tens of thousands of words. Not only does this permit
a more comprehensive understanding of the psycho-
logical underpinnings of risk but it also allows us to test
psychological hypotheses (e.g., hypotheses pertaining to
the relationship between fear and risk or between con-
creteness and risk) in a novel manner. Such tests can be
used to both evaluate current theories of risk percep-
tion, and to generate novel predictions for subsequent
laboratory-based research. Additionally, a comprehen-
sive understanding of the conceptual associates of dif-
ferent sources of risk can inform risk communication
strategies and help policy makers identify and remedy

Bhatia: Predicting Risk Perception
20 Management Science, Articles in Advance, pp. 1–24, © 2018 INFORMS



misconceptions regarding the riskiness of various tech-
nologies, products, or activities.

Our approach is of particular value in settings in
which participant data are difficult to obtain. One such
setting involves retrospective evaluations of risk. Often
it is useful for scholars and policy makers to determine
how the perception of a particular risk source has
evolved over time, or changed in response to a given
event. It is difficult to obtain retrospective evaluation
of the riskiness for a given risk source from human
participants.However,with appropriate natural language
data (e.g., newspaper articles extending many years
into the past) such an analysis using our computational
techniques is fairly straightforward. Indeed, such an
analysis not only provides estimates of the perceived
riskiness of a risk source over time but also can be used
to calculate changes in the psychological structure of
this risk source, including changes in its close associates
over time (see, e.g., Iliev et al. 2016, Garg et al. 2018 for
examples of such an approach applied to other do-
mains in psychology).

The proposed approach also can be used to predict
real-time changes in risk perception and representa-
tion. With the use of language data obtained from
online news media and social media, it is possible to
update learned vector representations (and thus update
predicted risk perceptions) based on current events.
Although it remains to be seen whether such an ap-
plication can provide actionable practical insights for
policy makers, there is no doubt that a technique for
measuring risk perception in real-time holds many
potential benefits for researchers (for a similar use of
social media in other domains, see Asur and Huberman
2010, Choi and Varian 2012, Curme et al. 2014).We hope
to contribute to such an application in the near future.

The power of the proposed approach extends beyond
just testing for temporal differences. It also can be used
to model changes in risk representation and perception
as a function of various social and cultural factors (Peters
and Slovic 1996, Finucane et al. 2000, Bickerstaff 2004).
Specifically, the models used in our analysis can be
trained on representative natural language data sets for
different cultural groups, and thus measure cultural
differences in the representation of risk sources, and
subsequently cultural differences in risk perception.
These differences can then be compared against ob-
servedfindings on the role of culture in the perception of
risk, and can similarly be used to derive new testable
predictions regarding culture and risk representation
(see, e.g., Chen 2013, Noguchi et al. 2014 for related
techniques for studying cultural differences in decision-
making). More generally, with appropriate natural
language data sets, our approach allows for the com-
putational analysis of individual-level risk represen-
tations: If we are able to obtain language data from the
information sources that a given individual is exposed

to, we can build a model that describes that in-
dividual’s knowledge about the world; a model that
can also quantitatively predict that person’s percep-
tions of risk (and corresponding risk associates). Recent
computational and societal developments have made
such data sets readily available, with important ap-
plications for the study of management (George et al.
2016), health behavior (Hawn 2009), consumer choice
(Humphreys and Wang 2017), cognition (Griffiths 2015,
Jones 2017), and other domains in the behavioral sciences
(Harlow and Oswald 2016, Kosinski and Behrend 2017).
We look forward to research that exploits these new and
exciting data sources, to further enhance our ability to
understand and predict risk perception.
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Appendix
In this appendix, we outline our computational approach
with the help of an example. Recall that our primary data
involves participant risk ratings for a set of risk sources. For
each of these risk sources we also have a 300-dimensional
vector representation. A simplified version of this data set,
involving five risk sources, each with a hypothetical 10-
dimensional representation and a hypothetical participant
rating is shown in Table A.1. In Table A.2 we show the
pairwise cosine similarities of these risk sources. This table
shows risk sources such as (1) cycling and mountain biking
and (2) mountain biking and hiking are quite similar (with
high cosine similarity values). Hiking and cycling are neither
similar nor dissimilar, and basketball is dissimilar to all
other risk sources (with negative cosine similarity values).
A principal components analysis on this table can be used to
recover the first two latent dimensions characterizing the
space of risk sources, like in Figure 1.

As part of our primary analysis we applied various
machine learning techniques to predict participant risk
ratings from our semantic vector representations. These
regressions used 9/10th of the data for model training and
the remaining 1/10th of the data for calculating model
predictive power (formalized in terms of the R2 of the
predictions on the test data) and repeated this 1,000 times,
with a random split at each time. With our hypothetical
example we can similarly divide our data set into two parts,

Table A.1. Risk Sources with Hypothetical 10-Dimensional
Vector Representations and Average Participant Risk
Ratings

Risk source Vector representation Risk rating

Cycling [2,−3,0,4,−1,−2,−1,1,−2,−1] 12
Mountain biking [2, −1,0,4, −1,0, −1,1,0, −1] 44
Rock climbing [1,2,0,4,−1,1,−1,1,1,−1] 48
Hiking [0,2,1,3,2,1,1,1,1,0] 4
Basketball [−1,1,0,−4,0,−1,1,1,−1,1] −22
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such as {cycling, rock climbing, basketball} for model
training and {hiking, mountain biking} for model testing.
We can use the vector representations and participant risk
ratings for the three risk sources in the first part to fit one of
our six machine learning techniques and then use mapping
learned by these techniques, applied to the vector repre-
sentations for the remaining two risk sources, to predict
participant risk ratings for these two sources. A measure of
model predictive power can be obtained by comparing the
R2 of our predictions relative to actual participant ratings for
these two risk sources. This can be repeated multiple times
with different data splits, and the resultant R2 values can be
averaged to obtain single measures of the predictive power
of the six machine learning techniques applied to the vector
representations. These measures can be compared against
each other and against similar measures for other existing
techniques (e.g., those involving linear regressions on par-
ticipant ratings on nine core risk dimensions).

Now in the main text, we also used our vector represen-
tations to examine the conceptual associates of risk. For this
purpose, we obtained a large set of words, with each word
possessing a 300-dimensional vector representation. Using
cosine similarity, we then calculated the association between
each word and each risk source. In Table A.3, we present a list
of words with hypothetical 10-dimensional vector repre-
sentations. Like in the paper, we calculated the association
between these words and the risk sources using cosine
similarity. These associations are shown in Table A.4. As can
be seen here, helmet is strongly associated with cycling and
mountain biking, weakly associated with rock climbing and
hiking, and negatively associated with basketball. Similar
associations exist for the other words.

In the main text, we determined the words that were most
associated with risk based on the structure of associations
between the words and the risk sources. This was done by
correlating the associations with the risk sources and the risk

ratings of the risk sources for each of the words. When ap-
plied to our hypothetical risk sources and words, this in-
volves correlating the associations in Table A.4 with the
participant ratings in Table A.1. Thus, for example, for helmet,
we correlated {0.97, 0.95, 0.56, 0.16,−0.72}with {12, 44, 48, 4,−22}
to obtain a risk association value of 0.78. A similar technique can
be applied to the remaining four words. Such risk associations
were used to generate Figures 6(a)–6(c) in the main text.

In the paper we also mapped various psychological vari-
ables on to risk associations in order to calculate the re-
lationships between these variables and the risk ratings of
participants. We can perform a similar analysis with our
hypothetical vector representations. Here, in Table A.3, we
have hypothetical ratings of the five words in terms of fear
(similar to the Mohammad and Turney ratings used in the
main text). Crash and fall are rated as being fearful whereas
the remaining words are not. To calculate the relationship
between fear and risk, we can perform a logistic regression
with the fear ratings for the five words as the dependent
variable and the risk associations of the five words as the de-
pendent variable. The magnitude of the resultant coefficient
would specify the association between fear and risk. Such re-
gressions were used in the main text for five other emotions, as
well as for word concreteness/abstraction to generate Tables 1
and 2, and Figures 7(a)–7(c). The main text also used a similar
technique, combined with data from a free association task, to
predict participant ratings of the risk sources on nine risk di-
mensions. The results of this analysis are provided in Table 3
and Figures 8(a)–8(c).
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